on the groups with the particular non-commuting graphs

Authors

neda ahanjideh

hajar mousavi

abstract

let $g$ be a non-abelian finite group. in this paper, we prove that $gamma(g)$ is $k_4$-free if and only if $g cong a times p$, where $a$ is an abelian group, $p$ is a $2$-group and $g/z(g) cong mathbb{ z}_2 times mathbb{z}_2$. also, we show that $gamma(g)$ is $k_{1,3}$-free if and only if $g cong {mathbb{s}}_3,~d_8$ or $q_8$.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

ON THE GROUPS WITH THE PARTICULAR NON-COMMUTING GRAPHS

Let $G$ be a non-abelian finite group. In this paper, we prove that $Gamma(G)$ is $K_4$-free if and only if $G cong A times P$, where $A$ is an abelian group, $P$ is a $2$-group and $G/Z(G) cong mathbb{ Z}_2 times mathbb{Z}_2$. Also, we show that $Gamma(G)$ is $K_{1,3}$-free if and only if $G cong {mathbb{S}}_3,~D_8$ or $Q_8$.

full text

On the Groups with the Particular Non-commuting Graphs

Let G be a non-abelian finite group. In this paper, we prove that Γ(G) is K4-free, if and only if G ∼= A× P , where A is an abelian group, P is a 2-group and G/Z(G) ∼= Z2 × Z2. Also, we show that Γ(G) is K1,3-free if and only if G ∼= S3, D8 or Q8.

full text

commuting and non -commuting graphs of finit groups

فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...

15 صفحه اول

On the eigenvalues of non-commuting graphs

The non-commuting graph $Gamma(G)$ of a non-abelian group $G$ with the center $Z(G)$ is a graph with thevertex set $V(Gamma(G))=Gsetminus Z(G)$ and two distinct vertices $x$ and $y$ are adjacent in $Gamma(G)$if and only if $xy neq yx$. The aim of this paper is to compute the spectra of some well-known NC-graphs.

full text

On the energy of non-commuting graphs

For given non-abelian group G, the non-commuting (NC)-graph $Gamma(G)$ is a graph with the vertex set $G$ $Z(G)$ and two distinct vertices $x, yin V(Gamma)$ are adjacent whenever $xy neq yx$. The aim of this paper is to compute the spectra of some well-known NC-graphs.

full text

On Laplacian energy of non-commuting graphs of finite groups

‎Let $G$ be a finite non-abelian group with center $Z(G)$‎. ‎The non-commuting graph of $G$ is a simple undirected graph whose vertex set is $Gsetminus Z(G)$ and two vertices $x$ and $y$ are adjacent if and only if $xy ne yx$‎. ‎In this paper‎, we compute Laplacian energy of the non-commuting graphs of some classes of finite non-abelian groups‎..

full text

My Resources

Save resource for easier access later


Journal title:
journal of algebraic systems

Publisher: shahrood university of technology

ISSN 2345-5128

volume 2

issue 2 2015

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023